
N87-26560

Reverse Time Migration- A Seismic Processing Application on the

Connection Machine

Rolf-Dieter Fiebrich

Thinking Machines Corporation

Cambridge, MA 02142

Abstract

This article describes the implementation of a reverse time migration algorithm on the Connection Machine, a

massively parallel computer. Essential architectural features of this machine as well as programming concepts are

presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm
are described. The algorithm matches the Connection Machine architecutre closely and executes almost at the peek
performance of this machine.

IN_'_{'_,_,_t_E lglrzRN_K NOT _II, MEp

P__O PAGE BL_TK NOT F'_IIW_

239

Introduction

This paper describes the implementation of a reverse
time migration algorithm on a massively parallel com-

puter. These computers, with thousands of processing

elements are entering the marketplace and offer better

cost performance than conventional mainframes, and

more importantly, promise to reach significantly higher

absolute performance levels in the coming years than
those which can be realized by conventional archite-

cures. This paper discusses how this technology can be

utilized efficiently for extremely computation-intensive

algoritms in seismic processing.

This paper focuses on the implementation of a reverse

time migration algorithm for 2D seismic processing.

The close match of this application with the Connection

Machine architecture results in substantial speedups

compared to conventional mainframes and strongly sug-
gests that this machine puts 3D seismic processing in
reach.

The remainder of this paper summarizes the archi-
tecture and programming issues of massively parallel

computers, followed by a discussion of the reverse time

migration algorithm and its implementation. A brief

performance summary for the program follows. The pa-

per concludes with comments on what massively paral-

lel computers can do today for seismic processing prob-
lems and the promise of this technology for the future.

Architecture and programming

of a massively parallel machine

A massively parallel computer can be viewed as a ma-

chine which can operate on thousands of data objects

at once, whereas a conventional computer operates on

one data object at a time. If an application permits for

instance to operate on all elements of a large vector or

matrix or on all nodes or edges of a graph in parallel,
then substantial execution speed improvements can be

obtained if a large number of processors is available,

ideally one processor for each data object.

A program for such a computer looks very much like

a program for a conventional computer, except that

certain program variables are declared to be parallel

variables which means that operations on those vari-

ables can take place in parallel. Instead of using a loop

statement to process all the elements of a vector or a

matrix or _ graph, one uses a select statement for all

240

the elements and all statements in the body of the se-

lect statement are performed in parallel on the selected

set, like the statements in the body of a loop statement

are performed on each element visited.

The above sketches an idealized programming model.

Physical parallel machines usually have some limita-

tions for implementing this model efficiently. For in-

stance, processors have to be assigned to data objects
at compilation time and cannot be reassigned during

execution time. Also the computation which a proces-

sor performs an a data object that is assigned to it in

general involves access to data ojbects assigned to other

processors. The execution time of _local access" vs.
_nonlocal" access is of course different. Programmers

need to take this into account for writing efficient pro-

grams, but this is not much different from optimization

considerations on conventional computers.

A physical computer which implements this model

is the Connection Machine [Hillis, 1985]. Most of the

experience reported in this paper was gained on this
machine. The Connection Machine uses a conventional

host which provides all the infrastructure for program

development and communicating with other comput-

ers. This host has, however, several important enhance-

ments. It has a significantly enlarged memory which is
partitioned in equal chunks and each chunk has a pro-

cessor associated with it. These processors cannot just

access data in their part of the memory, but can also
access the entire memory of the machine. All proces-

sors can perform these accesses in parallel. The pro-
cessors of the Connection Machine can be viewed as an

extension of the execution unit of the host. Figure 1
illustrates the architecture of the Connection Machine.

The Connection Machine model which was used for

most of the work described in this paper has a max-

imum of 32 MBytes of memory and 64 K processors.

The number of processors which a programmer sees is

typically significantly larger than the number of physi-

cal processors. The system supports a virtual processor

concept. The host for the Connection Machine can be
either a VAX or a Lisp Machine. Parallel program-

ming concepts as described above are implemented as

straigtforward extensions of C and Lisp.

Reverse time migration

Finite-difference scheme

The reverse time migration process is well known and
well documented in the literature [McMechan,1983].

Conceptually, reverse time migration, as with all depth

migrations, involves the transfer of data from the

(y,z = 0, t) time plane to the (y, z, t = O) depth plane.

This concept is illustrated graphically in Figure 2. For
the acoustic case, which is discussed here, wave prop-

agation through the earth is governed by the acoustic

wave equation. Attention is further restricted to the

two dimensional case. Hence, the wave equation has
the form

1

+ u..= z------Tu. (I)

where U is the acoustic wave field. Reverse time migra-

tion is based on an exploding reflector concept wherein

the interface between rock strata explode with sound

at time to. From that moment on waves propagate

according to the above wave equation at velocities one-

half their true velocity in accordance with the explod-
ing reflector model. If acoustic measurements are made

at various places along the earth's surface for all sub-

sequent time we have the equivalent of a zero offset

stacked section. Migration is implemented by reversing

the process and exciting mesh points at z -- 0 with the
time reversed recorded signals. Since the wave equation

is ambivalent to the direction of time this is no prob-

lem. The recorded signals act as boundary values in

the numerical solution of the wave equation.

Discretization of the acoustic wave equation in

time and space follows traditional numerical methods

[Dablain,1986]. Using these methods equation (1) may
be approximated by a fourth order spatial and second

order temporal operator. The notation

U.k .,,,= u(m, _., _k}

is used in writing the difference operator (where tk

refers to reverse time} as

U.k .
t_3

where

2U k-1 _ U._-2
i,] ,,_

A 2
._ .__[16(U:;113. __ uk-1 uk-1 k-1i-l,j + i,s'+l -l- U:,i_l)

-- 60U_ 1 _ uk- 1i-t-2,3'

__ U k-I __ U k-1 __ U k-1'-2,j 4,j+2 ',i-2] (2)

A = v(y,z) _y.

For purposes of simplifying the explanation of the im-

plementation it will be useful to have the simpler second

order spatial operator as well. The difference equation

is [McMechan,1983]

U -k. 2(1 _ k-1= - 2A)U_,j - U.k-2$_3 tt,]

Uk-X U_-:+ A2 [i+l,j-t- i-l,y

U_-I Uk-X+ +]. (3)

Consider equation (3). There are three time steps in-

volved and three spatial points in each direction. This

equation is illustrated graphically in Figure 3 where the

three time steps are represented as three depth planes

in reverse time, tl- Each illustrated plane is a small part
of a larger mesh on which the finite-difference scheme

is carried out. The data values required to compute the
current grid point value, U ki,y, are identified as the grid
point's own previous and second previous value, and

its immediate neighbors' previous value. Again, refer

to Figure 3 for a graphical representation of the pro-

cess. Initially, the previous and second previous depth
planes are zero. This corresponds to the assumption

that all signals are recorded until they are identically

zero. Conceptually the reverse time migration proceeds
as follows; 1) load the boundary value corresponding to

time step t0, 2) compute all the grid points in the cur-

rent depth plane, 3) push the stack of depth planes so

that the current plane becomes the previous plane and

the previous plane becomes the second previous plane,

4) repeat until time _rnaz (or to} is reached. The final
solution will be an acoustic wave field reconstruction of

the exploding reflectors imaged at time to for all depths.

Because of reflections from the boundary of the com-

putational grid it is desirable to implement absorb-

ing boundary conditions along the two edges and the

bottom [Clayton,1977]. When the wave field in the

depth plane is computed in step (2) above, an absorb-
ing boundary difference scheme must be used on the

edges.

Parallel Implementation

Finally, we are ready to discuss the paralle algorithm
for reverse time migration. We assign a processor to

each grid point in the finite-difference mesh Figure 3.

To compute the current value in a processor requires

that the processor reference its own local memory for

the previous and second previous value. It also requires

that the processor get the previous value from each of

its neighbors. This is exactly what is done in mapping
the algorithm onto the Connection Machine. The time

axis in Figure 3 corresponds to the memory axis of each

processor. The time section is usually larger, in terms

of the number of samples per trace, than the depth

section. As a result, the time section is incrementally
fed into the Connection Machine.

In generating a new data value in each processor (at
each grid point} two of the memory accesses are lo-
cal and the rest are non-local. The non-local accesses

require utilization of the general communication sys-
tem. Four such accesses are needed for the second or-

der finite-difference operator. In addition, to load the

boundary value at the beginning of each time step re-

24!

quires another non-local memory access. To implement

the absorbing boundary conditions the processors on

the edge of the computational grid are selected and

use an absorbing boundary finite-difference operator to

compute a new value. Consider a typical unmigrated
seismic section. There might be 1024 traces and 2500

time samples. If 512 depth steps are desired, there
must be 512K processors using the purposed parallel

approach. Since there are only 64K processors, virtual

processors must be used for almost all practical cases.

Using a virtual processor ratio of 8:1 will provide the

required 512K processors.

Timing

The total execution time for a data set of the size 1425

x 625 x 2500 is 441 seconds. This computation takes

several hours on a large mainframe.

The whole issue of timing is obviously machine spe-

cific and is instantly out of date due to hardware im-

provements. The point is that parallel computers can

compete with the fastest serial supercomputers. In ad-

dition, the very fact that the Connection Machine has
floating point instruction times measured in hundreds

of microseconds instead of tens of nanoseconds points

provides significant technological improvement.

Conclusions

Results from the reversetime migration implementa-

tion and from the many other non-seismlcapplictions

that have been programmed indicate that massively

parallelarchitecturesare viableand can perform at su-

percomputer levels.

In the specificcase of a reverse time migration al-

gorithm, performance improved by two ordersof mag-

nitude relativeto a VAX 785. This improvement is

achieveddespiterelativelysimple individualprocessors

in the fine-graincomputer. The fact that there are

64K such processorsfar outweighs the fact that each

processor isslow. Overall, vast speed improvements

are possibleboth forreverse time migraion in partic-

ularand for seismicprocessingin general. One excit-

ing possibilityisthatthe dream ofinteractiveinterpre-

tation/processingmight be realized. Imagine a work

stationwhere an interpretercan repeatedly migrate a

section,trying differentvelocitymodels each time. In

so doing,the iterativeprocess ofconvergingon a satis-

factorydepth model might take a few hours insteadof

many days. In addition,because the interpreterwould

be intimatelyinvolvedin the processing,the finalresult

242

would be betterthan with batch processing.This isjust

one computational problem that parallelcomputers can
address.

Acknowledgements

The author wishes to thank Rob Fricke and Monica

Wong for the implementation of the reverse time mi-

gration algorithm on the Connection Machine. Many

thanks go also to Olivia Fiske for her quick help in

preparing thisdocument.

References

[Clayton,1977]Clayton, R. W., and Engquist, B., 1977,

Absorbing boundary conditions for acoustic and

elasticwave equations:Bulletinfothe Seismologi-

cal Societyof America, 67, 1529-1540.

[Dablain,1986]Dablain, M. A., 1986, The application

of high-orderdifferencingto the scalarwave equa-

tion:Geophysics, 51, 54-66.

[Hillis,1985]Hillis,W. D., 1985, The Connection Ma-
chine:M.I.T. Press.

[McMechan,1983] McMechan, G. A., 1983, Migration

by extrapolationof time-dependent boundary val-

ues: Geophysical Prospecting 31, 413-420.

Memory

I Host

t

Bus :

_ , _

D
t---_J'nt"f" c"I 4Unit

n Data

Element Router Memory
Processors

High Bandwidth I I
Connection Machine Bus

OtherDevices

Figure 1: Architecture of the Connection Machine System

243

|_--0

Fig.re 2: l_everse Time Migration

244

I

Figure 3: Computation of Second Order Difference Operator

245

